- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aranson, Igor S. (1)
-
Baker, Remmi Danae (1)
-
Baksa, Steven_M (1)
-
Berlyand, Leonid (1)
-
Chen, Long‐Qing (1)
-
Dabo, Ismaila (1)
-
Ferri, Kevin (1)
-
Gopalan, Venkatraman (1)
-
He, Jingyang (1)
-
Jacques, Leonard_C (1)
-
Kelley, Kyle_P (1)
-
Maria, Jon‐Paul (1)
-
Potomkin, Mykhailo (1)
-
Rubio, Leonardo Dominguez (1)
-
Ryu, Gyunghyun (1)
-
Sen, Ayusman (1)
-
Trolier‐McKinstry, Susan (1)
-
Wang, Bo (1)
-
Zu, Rui (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Active particles consume energy stored in the environment and convert it into mechanical motion. Many potential applications of these systems involve their flowing, extrusion, and deposition through channels and nozzles, such as targeted drug delivery and out‐of‐equilibrium self‐assembly. However, understanding their fundamental interactions with flow and boundaries remain incomplete. Herein, experimental and theoretical studies of hydrogen peroxide (H2O2) powered self‐propelled gold–platinum nanorods in parallel channels and nozzles are conducted. The behaviors of active (self‐propelled) and passive rods are systematically compared. It is found that most active rods self‐align with the flow streamlines in areas with high shear and exhibit rheotaxis (swimming against the flow). In contrast, passive rods continue moving unaffected until the flow rate is very high, at which point they also start showing some alignment. The experimental results are rationalized by computational modeling delineating activity and rod‐flow interactions. The obtained results provide insight into the manipulation and control of active particle flow and extrusion in complex geometries.more » « less
-
Zu, Rui; Ryu, Gyunghyun; Kelley, Kyle_P; Baksa, Steven_M; Jacques, Leonard_C; Wang, Bo; Ferri, Kevin; He, Jingyang; Chen, Long‐Qing; Dabo, Ismaila; et al (, Advanced Physics Research)Abstract Multifunctionality as a paradigm requires materials exhibiting multiple superior properties. Integrating second‐order optical nonlinearity and large bandgap with piezoelectricity can, for example, enable broadband, strain‐tunable photonics. Though very different phenomena at distinct frequencies, both second‐order optical nonlinearity and piezoelectricity are third‐rank polar tensors present only in acentric crystal structures. However, simultaneously enhancing both phenomena is highly challenging since it involves competing effects with tradeoffs. Recently, a large switchable ferroelectric polarization of ≈80 μC cm−2was reported in Zn1‐xMgxO films. Here, ferroelectric Zn1‐xMgxO is demonstrated to be a platform that hosts simultaneously a 30% increase in the electronic bandgap, a 50% enhancement in the second harmonic generation (SHG) coefficients, and a near 200% improvement in the piezoelectric coefficients over pure ZnO. These enhancements are shown to be due to a 400% increase in the electronic anharmonicity and a ≈200% decrease in the ionic anharmonicity with Mg substitution. Precisely controllable periodic ferroelectric domain gratings are demonstrated down to 800 nm domain width, enabling ultraviolet quasi‐phase‐matched optical harmonic generation as well as domain‐engineered piezoelectric devices.more » « less
An official website of the United States government
